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Abstract 
 Water infiltrating down a fracture in unsaturated rock experiences complex fluid-flow and 
heat-transfer phenomena when entering above-boiling rock temperature regions. Such conditions 
are expected, for example, after emplacement of heat-generating nuclear waste in underground 
repositories. A new, efficient semi-analytical method is proposed in this paper that simulates the 
flow processes of infiltration events subject to vigorous boiling from the adjacent hot rock. It is 
assumed that liquid flow forms in localized preferential flow paths, and that infiltration events 
are typically short in duration but large in magnitude relative to the average net infiltration. The 
new solution scheme is applied to several test cases studying sensitivity to a variety of input 
parameters. Sample simulations are performed for conditions representative of the potential 
nuclear waste repository at Yucca Mountain, Nevada. A characteristic parameter is introduced 
that provides a quick estimate of the relative significance of boiling at a given location of 
interest.   

INDEX TERMS: 1829 Hydrology: Groundwater Hydrology; 1875 Hydrology: Unsaturated Zone; 
1878: Hydrology: Water/energy Interactions 

KEYWORDS: finger flow, unsaturated fractured rock, thermal, vaporization  
 

1.  Introduction 
 Heat released from high-level nuclear waste packages in a partially saturated environment can 

have a major impact on moisture distribution and migration. At Yucca Mountain, Nevada, the 

potential repository horizon is located in thick, partially saturated tuff formations that contain 

more than 80% liquid water in the pore space. As formation temperatures approach and exceed 

the boiling point at prevailing pressures, pore water vaporizes and a hot dry-out region develops 

in the vicinity of the emplacement tunnels. Since liquid water infiltrating down towards the 

repository will be subject to strong vaporization, the superheated rock zone forming above the 

repository may significantly reduce the possibility of water contacting the waste packages 

[Ramspott, 1991; Nitao et al., 1992; Wilder, 1993; Buscheck and Nitao, 1993]. The amount of 

infiltrating water that can reach the emplacement tunnels has significant implications for the 

integrity of the waste canisters and the subsequent release of contaminants. 

 The thermally driven flow processes to be expected at Yucca Mountain have been analyzed in 

a combined program of field, laboratory, and theoretical studies. There is a long record of 
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mathematical modeling studies devoted to the prediction of the future thermal-hydrological 

conditions in the unsaturated environment [Nitao et al., 1992; Pruess and Tsang, 1993, 1994; 

Pruess et al., 1984, 1985, 1988, 1990a, b; Tsang and Pruess, 1987, 1989]. Typically, these 

studies have demonstrated that a large, superheated dry rock region will form for several 

thousand years at Yucca Mountain, and that during this period, infiltrating liquid water is not 

expected to contact waste packages. These findings have been supported by measured data—and 

associated numerical modeling work—collected from in situ heater experiments, such as the 

Single Heater Test and the Drift Scale Test, in which conditions around the heat sources are 

typically “hot and dry,” and a significant amount of seepage into drifts is not observed [Tsang 

and Birkholzer, 1999; Birkholzer and Tsang, 2000].  

 However, there is concern that the exclusion of liquid water from the hot rocks may not be 

absolute [Pruess and Tsang, 1994]. The amount of water that can be generated by vaporization-

condensation processes is potentially very large. Condensate will form a halo of elevated liquid 

saturation just outside the dry-out region, and thus provide a localized source of continuous or 

episodic water flow. Although the above modeling studies are capable of predicting the relevant 

physical processes (such as the significant vaporization-condensation cycles), they typically 

involve some sort of volume averaging and homogenization of heterogeneous formation 

properties. As a result, such modeling studies tend to underestimate the probability of 

preferential localized pathways that may carry liquid water at flow rates much larger than 

average infiltration. Also, since spatially uniform flow in fractures is assumed, they overestimate 

vaporization effects, caused by the much larger cross-sectional area between the flowing liquid 

and the adjacent hot rock [Pruess, 1997].  

 In recent years, a number of small-scale flow visualization experiments—and related 

theoretical studies—have been performed to analyze localized preferential flow paths in 

unsaturated sub-boiling fractures [e.g., Glass, 1993; Nicholl et al., 1994; Persoff and Pruess, 

1995; Glass and Nicholl, 1996; Pruess, 1998; Su et al., 1999]. It was stated in these studies that 

liquid flow typically forms in narrow fingers, induced by local aperture variations and 

gravitational instability. Intermittent flow in unsaturated fractures was experimentally observed 

by Nicholl et al. [1993], Persoff and Pruess [1995] and Su et al. [1999], who found that capillary 

differences in individual fractures can yield short-term episodic flow, even when constant inlet 

flow conditions are maintained. Kneafsey and Pruess [1998] reported similar findings in 

laboratory experiments performed for above-boiling conditions, analyzing heat-driven two-phase 
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flow in artificial fracture replicas. Typically, these observed flow events were small with respect 

to the water volume carried and the finger geometry. The detailed quantitative results of Su et al. 

[1999], for example, revealed water volumes of less than a milliliter per episodic flow event 

flowing in fingers that are a few millimeters wide. Recognizing the possibility of episodic 

preferential flow, Ho and Wilson [1998] proposed a conceptual model for unsaturated infiltration 

at Yucca Mountain that assumes discrete ribbon-type vertical flow paths (weeps) of given 

spacing and episodicity.  

 The above considerations suggest that the probability of infiltrating water reaching waste 

emplacement tunnels at above-boiling conditions must be estimated using a preferential-flow 

model for episodic flow events. In 1996, Phillips presented a one-dimensional analytical solution 

for gravity-driven infiltration of a liquid finger into superheated rock, giving penetration distance 

of the tip of the finger versus time. Though the simple conceptual model proposed by Phillips is 

very useful for understanding basic phenomena, his analytical solution was derived using a heat-

balance assumption that makes the solution applicable only at large time scales, ones that exceed 

the time periods relevant in this study (see Appendix A). Also, Phillips’ solution is for 

continuous infiltration only; thus, the analytical solution cannot answer the question of how far a 

short-term finger flow event of given water volume can penetrate into the superheated rock 

before the water has entirely boiled off.    

 Extending Phillips’ conceptual model, we present an exact semi-analytical method in this 

paper that solves for penetration distance and mass flow of both short-term (episodic) and 

continuous fingers in superheated fractures. The objective of this paper is to develop a fast and 

simple algorithm valid for early and late time periods, and to study mechanisms controlling the 

infiltration of short-term flow events at above-boiling conditions. The solution method features a 

time-marching algorithm that tracks the movement of water pulses while mass losses resulting 

from water vaporization are accounted for using an analytical expression of Carslaw and Jaeger 

[1959]. To illustrate the relevant processes and to analyze their sensitivity to some key 

parameters, the new method is applied to a variety of test cases, with the hydrogeological and 

thermal conditions typical for the repository horizon at Yucca Mountain after a few hundred 

years of waste emplacement. The characteristics of episodic finger flow assumed in these test 

cases are representative of those observed in the above cited experimental studies.  

 Figure 1a schematically depicts the processes studied: it is assumed that episodic infiltration 

events are induced by local aperture variation or gravitational instability somewhere in the 
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condensation zone above the repository. Finger-type fast flow is directed towards the 

superheated region around the waste emplacement tunnels, hereafter referred to as “drifts.” 

Depending on finger flow characteristics as well as temperature and pressure conditions, some 

liquid pulses will completely vaporize, whereas others may penetrate significantly into the 

superheated region and eventually reach the waste canisters. Thus, for given episodic flow 

events, we are interested in the maximum penetration distance of the liquid finger, the apparent 

front penetration velocity of the finger tip, the decrease of mass flow resulting from boiling, and 

the possibility that part of the liquid may escape vaporization and eventually reach the 

emplacement drifts. In the last case, we are also interested in the amount of water arriving at the 

drift wall. The new semi-analytical solution enables us to evaluate all the above points of 

interest. 

 

2.  Conceptual and Mathematical Model 
 The processes described at the end of Section 1 are studied using a simple conceptual model 

as depicted in Figure 1b, showing a typical situation above waste emplacement drifts at Yucca 

Mountain several hundred years after waste emplacement [Phillips, 1996]. A superheated region 

of rock has developed around the drift, extending to a distance L above the drift crown. As the 

ambient rock water has long been boiled off, fractures and rock are dry. The temperature field is 

assumed to be uniform in the lateral x-direction and a function of location in the vertical 

z-direction (TRI =f(z)). Pressure is close to atmospheric, since effective pathways for gas pressure 

release are provided by a well-connected fracture network [Birkholzer and Tsang, 2000].  

 Above the superheated rock, a sub-boiling region is established that may hold substantial 

amounts of water, both from ambient saturation of matrix pore volume and condensation of 

vapor caused by heating. We assume that fast finger flow events of constant mass flow rate mP 

and given pulse duration tP can form somewhere in this sub-boiling region. (The pulse duration 

denotes the time period needed for the finger to flow past a given location). Note that these 

pulses may be either episodic with finite tP or continuous with infinite tP. The water moves 

downward under gravity in a single vertical fracture of uniform aperture (2b). Within the fracture 

plane, finger flow with uniform ribbon or “finger” width w is assumed. Lateral spreading of the 

ribbon is not considered, and flow is strictly one-dimensional. (Typically, the ribbon width is 

much larger than the fracture aperture). This simplified flow concept neglects that finger flow in 

natural fractures often occurs in more complex tortuous paths, depending on aperture variation 
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and fracture geometry. Possible processes are spreading and splitting of fingers, or blockage of 

flow at low aperture zones, all of which would make the above flow model conservative with 

respect to the potential penetration into superheated rock. On the other hand, separate fingers 

may also coalesce, thereby increasing the mass of water and thus enhancing the potential for 

finger penetration. Inclusion of these complex flow processes is beyond the scope of this paper. 

However, we expect the simplified flow model to provide an appropriate first-order 

representation of downward flow, because on average the above conservative and non-

conservative processes should somewhat cancel out.  

 In the sub-boiling region, the liquid finger infiltrating down toward the superheated region is 

assumed to be in thermal equilibrium with the surrounding rock. By heat conduction from the 

rock, the water is heated up to almost boiling temperature when the boiling-point isotherm is 

approached. Because the rock matrix has very low permeability, the only relevant contribution to 

heat transport in the matrix comes from conduction. Imbibition of the infiltrating water into the 

rock is neglected. In the sub-boiling region, the mass flow rate mP of the flow event is uniform in 

space and has a constant duration tP.  

  At time t = 0, the liquid finger penetrates past the boiling-point isotherm and enters the 

superheated region. We assume that the water has already reached boiling temperature TP at time 

t = 0 and remains at TP for all times t > 0. As the liquid finger is traveling down the fracture in 

the superheated region, part of the water vaporizes as a result of the thermal energy provided by 

the surrounding hot rock faces. We assume that the energy resistance at the contact between the 

fracture and the rock is negligible. Therefore, the rock surface instantaneously cools to boiling 

temperature, and a steep temperature gradient is established in the surrounding matrix as soon as 

the liquid front in the fractures reaches the considered position. Over time, the thermal 

perturbation penetrates further into the rock, the thermal gradient decreases, and heat flow from 

the matrix to the fracture reduces. Heat conduction in the matrix is very slow compared to the 

vertical movement of the liquid pulse. Consequently, the lateral gradient in the rock is much 

larger than the vertical gradient, and we assume that the conductive heat flow within the matrix 

and from the matrix to the fracture is strictly lateral, perpendicular to the fracture plane.  

 The maximum penetration of a given liquid pulse into the superheated region depends on the 

different time and length scales involved, as well as on the relative intensity of mass flow in the 

fracture and heat flow in the rock. Considering the above assumptions and neglecting advection 
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and diffusion of heat within the liquid ribbon (i.e., constant liquid temperature TP), we can 

formulate a simple energy balance equation:  
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The left side of Equation (1) gives the energy required to vaporize a fraction of the liquid mass 

flow in the fracture, while the right side of Equation (1) denotes the energy supplied from the 

rock by conduction, calculated from the gradient at the rock-fracture interface. The coordinate z 

denotes the distance down the fracture below the undisturbed position of the boiling-point 

isotherm. The liquid front enters the superheated region at t = 0. At z = 0 and 0 < t ≤ tP, 

m(z,t) = mP. Note that the fate of the vapor produced from boiling is not considered when 

solving Equation (1), because the downward flow of water in the superheated rock is not affected 

by this vapor transport. While water travels downward with gravity, vapor would migrate 

upward, eventually reach cooler rock outside of the superheated zone, and condense, thereby 

contributing to the possible generation of future episodic finger flow. These processes of vapor 

recirculation and/or pulse generation are beyond the scope of this study. 

 The lateral temperature distribution in the rock is governed by the one-dimensional heat 

conduction equation  
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with the boundary conditions:  

 ,          for z > l(t)  ( ) RIR Tt,0T =

 ,           for z ≤ l(t) (3) ( ) PR Tt,0T =

 ,         for all t  ( ) RIR Tt,T =∞

Here, l(t) is the infiltration distance of the liquid front at time t. As long as the front has not 

arrived at location z, the rock temperature TR at the fracture-rock interface (i.e., at x = 0) remains 

undisturbed and equal to the initial rock temperature TRI. However, as soon as the liquid pulse 

moves to the considered location, TR(0,t) instantaneously decreases to the liquid pulse 

temperature TP. At x = ∞, far away from the fracture, the rock matrix temperature remains 

unchanged from its initial value TRI. (This latter boundary condition could be relaxed, however, 

and temperature boundary condition could be assumed at a finite distance into the rock, e.g., a 

constant temperature or a given heat flux.) 
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  For the matrix conduction problem as given above, an analytical solution is readily available 

[e.g., Carslaw and Jaeger, 1959, pp. 58ff]. Let t0(z) be the time interval after initial infiltration 

across z = 0 until the arrival of the tip of the liquid finger at location z. Then, the lateral rock 

temperature distribution at location z and time t is given as 

 ( ) ( )
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while the temperature gradient at x = 0 becomes 
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Inserting Equation (5) into Equation (1) and performing slight rearrangements, we get 

 
( ))z(tt

TT
h

wk2
z

)t,z(m

0

PRIm

−πκ

−
−=

∂
∂

. (6) 

This equation is valid as long as the thermal perturbation in the rock is nearly uniform across the 

width of the liquid finger. Since thermal perturbation grows with (κ t)1/2, the maximum time 

scale associated with uniform thermal perturbation is of order  

 
κ
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2
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For t > tm, the nearly one-dimensional heat flow perpendicular to the fracture-rock interface 

transforms to a more circular spreading of heat, and Equation (6) can no longer be applied. 

However, in most cases of practical concern, tm is much larger than the time scale of interest. 

 In a later section (Section 4.5), we will introduce the simple asymptotic expression of Phillips 

[1996] that gives an approximate solution for the long-term behavior of Equation (6). This 

solution is only dependent on the magnitude of the liquid pulse and the amount of heat supplied 

from the rock. The nature of flow in the fracture, generally influenced by gravitational, viscous, 

and capillary forces, is not included. Apparently, at late times, front penetration is completely 

dominated by mass losses as a result of vaporization. At early and intermediate times, however, 

front penetration is governed by a combination of the above processes, and the nature of flow in 

the liquid ribbon needs to be considered together with vaporization effects.  

 It is not an easy task to develop a simplified, but still appropriate, conceptual model for the 

flow characteristics in a liquid finger in response to mass losses as a result of vaporization. We 

may start by describing undisturbed flow in a sub-boiling environment, just above the 

superheated region so that the water temperature is already close to boiling. Our simplifying 
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assumptions are that flow in the fracture is laminar and fully developed and that a parallel-plate 

representation of the fracture plane can be applied. As hysteretic effects are neglected (i.e., air 

entry pressure at the end of the pulse is equal to water entry pressure at the tip of the pulse), only 

gravity forces and viscous forces are relevant. Using boiling-point values for ρl and µ, the flow 

velocity vP in the finger can be approximated as follows:  
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while the mass flow rate mP is given as  

 . (9) PlP vw)b2(m ρ=

 The crucial question is how flow behavior changes as the pulse enters the superheated region 

and part of the water is boiled off. Obviously, the relevant processes occur on a very small (pore) 

scale and cannot be modeled by the well-known characteristic relationships between relative 

permeability, saturation, and capillary pressure derived for macroscopic scales. For discussion, 

let us assume that flow in the liquid finger remains dominated by gravity and viscous forces. 

Then, the relative permeability kr(z,t) is similar to the ratio between the mass flow of the liquid 

pulse in the superheated rock m(z,t) and the undisturbed mass flow mP. Let us also assume that 

flow in the liquid finger may become partially saturated with saturation Sl(z,t) (0 ≤ Sl(z,t) ≤ 1), 

and that the width of the ribbon remains unchanged. Then, the flow velocity in the liquid finger 

at location z and time t is 
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Scaled by the undisturbed flow velocity vP, we arrive at the following relationship between 

dimensionless flow velocity v(z,t)/ vP and dimensionless mass flow m(z,t)/ mP 
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We have plotted this relationship in Figure 2, considering different possible scenarios. A lower 

limit for flow velocity in the superheated environment is provided by assuming that flow is 

always fully developed and the saturation in the liquid finger remains at its initial value (i.e. 

Sl(z,t) = 1). (This scenario was used by Nitao and Buscheck [1991], studying liquid infiltration 

into a fracture under the influence of matrix imbibition.) Flow velocity in the liquid finger 

changes linearly with mass flow rate, which gives rise to a significant decrease of v(z,t) as 

vaporization becomes effective. The assumption of Sl(z,t) = 1 forces the penetrating front to slow 
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down such that the liquid finger is always saturated despite the mass losses. Solution of this 

scenario provides a lower estimate for the front penetration of a liquid pulse, as two mechanisms 

act to delay the front: (1) a complete vaporization of water at the tip of the pulse, and (2) a 

decrease in water flow velocity in response to mass losses.  

 An upper limit for flow velocity is defined assuming that the velocity of water penetrating 

into the superheated rock remains constant at its initial value vP, as long as water is available 

(z  ≤ l(t)). From Equation (11), this translates into a scenario in which saturation of the liquid 

finger decreases linearly with the decreasing mass flow rate (i.e., Sl(z,t) = m(z,t)/mP = kr(z,t)). 

Here, front penetration is delayed compared to the undisturbed flow velocity vP by only one of 

the above mechanisms: vaporization of water at the tip of the moving front. Solution of this 

scenario provides an upper estimate for the front penetration of a liquid pulse.  

 For illustrative purposes, we have also plotted a typical characteristic relationship for relative 

permeability as a function of saturation, used for macro-scale representation of partially 

saturated porous media. As an example, we apply Corey’s definition [Corey, 1954] where kr(z,t) 

= (Sl)4, using a residual saturation value of zero for both liquid and gas phases. Inserting this 

definition into Equation (11) and replacing kr(z,t) with m(z,t)/mP gives dimensionless velocity 

for this case of v(z,t)/vP = (m(z,t)/mP)0.75. In Figure 2, Corey’s curve is bounded between the 

aforementioned scenarios; however, it is closer to the linear formulation in the first scenario 

compared to the second constant-velocity scenario. Apparently, the first scenario formulates an 

extreme example of a macro-scale characteristic function, indicating that the underlying 

assumption may not be applicable on the relevant pore scale. 

  It is difficult to postulate which one of the above scenarios is more realistic in a natural 

fracture. The experiments performed by Kneafsey and Pruess [1998] clearly demonstrate the 

potential of gravity-driven fingers forming above and penetrating into superheated rock; 

however, the length scale of the experiment was too small to suggest preference of one scenario 

over the other. Considering the objective of the present paper, we decided to assess the most 

conservative (worst-case) scenario, where the flow velocity of water remains constant and 

retardation of the liquid front is a result of vaporization only. This will provide upper limits for 

the potential of liquid pulses penetrating into the superheated rock at Yucca Mountain and 

eventually reaching waste emplacement drifts. Future work should be directed towards 

appropriately designed laboratory experiments that help to improve our understanding of liquid 
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finger flow in hot rock and allow validation (or adjustment) of the simplified assumptions of the 

above conservative conceptual model.  

 

3.  Semi-Analytical Solution Scheme 

 A simple Lagrangian solution approach is developed for the mass flow of liquid pulses in a 

fractured superheated regime, as described by Equation (6). In this approach, a time-marching 

algorithm tracks the movement of small submasses of water traveling downwards while 

considering the liquid mass losses caused by vaporization. This straightforward technique allows 

for a very fast and robust solution and can serve as a tool to investigate and understand the nature 

of the physical processes involved.  

 A schematic of the solution procedure is given in Figure 3. The total liquid mass MP of the 

infiltration event, given as MP = mP tP, is discretized into nMass small submasses Mj ("buckets"). 

Starting at t = 0, these submasses are subsequently introduced into the superheated region at z = 

0 until the episodic infiltration event has ended. With the time-step size chosen as dt = tP/nMass, 

exactly one "bucket" is released within each time step. Following the discussion in Section 2, we 

assume for the flow of each submass: (1) a constant flow velocity vP independent of the change 

of mass caused by vaporization, and (2) gravity-driven flow neglecting capillarity differences 

within the liquid ribbon. We divide the superheated region into uniform vertical space 

increments of length dz = vP dt. This way we assure that "buckets" move from one space 

increment i to the next downward space increment i+1 within the exact time step interval dt. The 

total number of space increments nz is given by nz = L/dz, where L is the extent of the boiling 

zone above the location of interest (i.e., the drift crown).  

 For each submass Mj (j=1,nMass), the change of mass caused by water vaporization along the 

vertical distance dz is calculated using Equation (6) in its discrete form  
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Equation (12) can be solved for each submass independently from the other submasses. Solution 

is trivial as long as the rock temperature field is known at all locations along the flow path of 

each submass. This is easily achieved by consecutively solving one submass after the other and 

accounting for the times when the rock temperatures were first being perturbed from the arriving 

liquid front in the fracture. For each submass Mj, the rock temperature information needed is 

collected from the solution for the previously released submasses. The mass flow rate m(z,t) of 
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the liquid pulse is immediately given after solving Equation (12). (The value of submass Mj/dt at 

space increment i corresponds to m(z,t) at z = idz and t = (j-1)dt + idt. In this expression for t, the 

first term, (j-1)dt,  denotes the time interval from t = 0 to the time at which submass Mj is 

released; the second term, idt, denotes the time needed for Mj to flow from z = 0 to location i).  

 For a better understanding of the physical processes, let us follow the first few submasses on 

their way down the superheated regime (Figure 3). For the submass M1, the surrounding rock 

temperature at any location z along the fracture is still at initial value TRI before M1 arrives. If we 

solve Equation (12) using the rock temperature distribution at the end of each time step (fully 

implicit scheme), the time interval in this equation, t-t0(z), is simply the time step size dt, for all 

space increments along the infiltration of submass M1. Consequently, the resulting temperature 

gradient at the fracture-rock interface is given as 
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TT PRI
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which will be referred to as T’ hereafter. Because dt is small, T’ is very steep, and the available 

water mass M1 vaporizes rapidly. Eventually, at some distance l1, the water has completely 

vanished and the penetration of the first "bucket" has ended. 

 The second submass M2, introduced immediately after the first one, will move part of the way 

down in a rock temperature field that has already cooled to boiling temperature TP one time step 

earlier. Thus, along distance l1, the time interval in Equation (12), t-t0(z), becomes 2dt and the 

temperature gradient at the fracture-rock interface is 
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The rate of vaporization for submass M2 is smaller than for M1, and it will penetrate further into 

the superheated region before the available water mass has vanished. Let l2 be the maximum 

penetration of the second "bucket" before the water has completely vaporized. Along the 

additional penetration distance, l2-l1, the temperature of the surrounding rock has not been 

disturbed earlier, so that the temperature gradient at the fracture-rock interface is equal to T’ and 

the rate of vaporization is as high as for the first "bucket". 

 It follows that a third “bucket” would see smaller thermal gradients along l2 compared to 

submass M2, and thus penetrate to a distance l3 > l2; a fourth "bucket" would see smaller thermal 

gradients along l3 compared to submass M3 and travel to a distance l4 > l3, and so forth. On its 

way down, "bucket" M3 would experience rock interface thermal gradients of T’/ 3 , T’/ 2  and 
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T’ for penetration distances 0 to l1, l1 > l2 and l2 > l3, respectively; while "bucket" M4 faces 

thermal gradients of T’/ 4 , T’/ 3 , T’/ 2  and T’ for travel distances 0 to l1, l1 > l2, l2 > l3 and 

l3 > l4, respectively. We may generalize these findings for submass Mj (j=1,nMass) with an 

associated maximum penetration distance of lj. It can easily be found that in a given distance 

interval, lk-1-lk (k=1,j), the rock surface temperature gradient is as follows: 

 
1

PRI

)1k(j
1

dt
TT

)1k(j
1

−−
=








πκ

−

−−
T’. (15) 

This means that the temperature gradient is always largest at the tip of the front (i.e., for k = j), 

and it is smallest at the end of the liquid pulse close to z = 0 (i.e., for j = nMass and k = 1). From 

one submass Mj to the next submass Mj+1, the gradient changes by a factor of 
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 Several interesting implications follow from the aforementioned simple considerations related 

to the time-marching solution scheme: 

1. The infiltration length of the tip of the moving liquid front versus time can easily be 

derived by obtaining the maximum penetration distance lj of each submass Mj and 

calculating the time when this submass has reached its maximum penetration.  

2. The maximum penetration of an episodic pulse is defined by the distance that the last 

submass penetrates into the superheated region before it has completely boiled off. At this 

time, all water has vanished and the liquid pulse flow event has ended.  

3. Since submasses of water have completely vaporized at a certain distance from the 

boiling–point isotherm and only later submasses will reach further infiltration distances, 

the apparent penetration velocity ∂l(t)/∂t of the tip of the liquid front is smaller than the 

actual flow velocity vP. The apparent penetration velocity is equal to the actual flow 

velocity only for the first "bucket". The second is already delayed by one time step dt 

when it reaches its maximum penetration distance, the third by two time steps, and so 

forth. The longer the infiltration event, the more the apparent penetration velocity deviates 

from the actual velocity of flow in the liquid ribbon. Thus, there are two major flow 

periods: (1) at early times, front propagation is governed by the gravity-driven flow 

behavior in the fracture, with small influence by heat conduction from the matrix; (2) at 

later times, boiling of water significantly retards the frontal advance, and the front 

penetration velocity is much smaller than the gravity-driven flow velocity vP. 
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4. The factor given in Equation (16) is always smaller than 1, indicating that even for large 

times there will always be a (small) rock temperature gradient change from one submass to 

the next one released, and each "bucket" will travel (slightly) further than the previous one. 

Hence, a continuous infiltration event will never reach a steady-state situation in which the 

penetration of the liquid front comes to an end. (The assumption of an infinite rock matrix 

implies that the lateral perturbation of the rock temperature field continues to spread 

laterally for all times). 

5. Even if a liquid pulse reaches the location of interest in the superheated zone (e.g., a waste 

emplacement drift), the remaining liquid mass may be much smaller than the total mass 

injected at the top. The cumulative amount of water can easily be derived by adding up the 

individual submasses arriving at this location. 

 

4.  Application and Results  
 To illustrate the processes described above, the new semi-analytical solution scheme is 

applied to several test cases. These cases have hydrogeological conditions and properties similar 

to the expected situation at Yucca Mountain after several hundred years of heating. Depending 

on the final design, the waste packages, placed into underground tunnels, will generate sufficient 

heat to boil ambient matrix water and establish a dry superheated region of significant extent. In 

our study, we assume an above-boiling region extending 3 m above the crown of an 

emplacement drift. (This value represents the low range of predicted conditions at Yucca 

Mountain; it was mainly chosen for illustrative purposes). Pressure in the formation is close to 

atmospheric conditions, and boiling temperature is TP = 96oC. Temperature at the drift crown is 

111oC. These values relates to a vertical temperature gradient of β = 5oC/m when assuming a 

linear variation in temperature within the superheated region (TRI = TP + β z). Thermal properties 

of the rock are based on site-specific measurements for the stratigraphic unit in which the major 

part of the potential geological repository will reside (i.e., the Topopah Spring Lower 

Lithophysal Unit; see Table 1).  

 Realistic values of flow rate, duration, and geometry of episodic flow events are difficult to 

guess, because of significant temporal and spatial variation of flow at Yucca Mountain. It is 

widely believed that water flow from the condensation zone downward towards the superheated 

region around drifts may occur episodically in fast pathways, with flow rates much higher than 

the average infiltration. For demonstration purposes, we shall study two cases that may represent 
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a reasonable range of possible episodic flow events. In both cases, a finger width of w = 0.02 m 

shall be assumed. Comparable values of finger width have been measured in laboratory 

experiments of Nicholl et al. [1994], Kneafsey and Pruess [1998] or Su et al. [1999]. Typical 

fracture apertures for the densely fractured tuff formations, characterized in the underground 

testing facility at Yucca Mountain [e.g., CRWMS, 1997], are (2b) = 0.917 × 10-4 m (Case 1) and 

(2b) = 2.490 × 10-4 m (Case 2). Associated fracture permeabilities are 7.01 × 10-10 m2 and 

5.17 × 10-9 m2, respectively. Assuming fully developed, gravity-driven ribbon flow according to 

Equations (8) and (9), the above fracture properties relate to mass flow rate of 4.0 × 10-5 kg/s 

(Case 1) and 8.0 × 10-4 kg/s (Case 2). The respective vertical flow velocity vP is 2.27 cm/s in 

Case 1 and 16.72 cm/s in Case 2.  

 We may assume at this point that the small, relatively slow flow event in Case 1 is associated 

with a comparably long duration, tP = 60 s, while the larger, faster flow event in Case 2 is related 

to a shorter duration, tP = 3 s. In both cases, the respective total liquid volume VP is the same, 

i.e., 2.4 mL, calculated from VP = ρL mP tP. We may relate this intermittently flowing water 

volume to the time- and space-averaged infiltration in the arid zone of Yucca Mountain, which is 

about 5 to 10 mm/year at ambient state. For illustration, let us assume one vertical preferential 

flow path per square meter cross-sectional area. Now, suppose downward infiltration is episodic, 

and fast flow fingers of 2.4 mL would occasionally migrate past given locations for short flow 

periods of 60 s in Case 1 and 3 s in Case 2, respectively. Then, from simple mass balance 

considerations, these short flow periods must be followed by much longer time periods without 

downward flow to arrive at the average infiltration at Yucca Mountain. Using the upper value of 

10 mm/year, for example, these time periods without finger flow would be about 2.1 hours long. 

In this way, small episodic flow events such as Cases 1 and 2 can occur at numerous locations 

within Yucca Mountain at a frequency of about one event every 2 hours. Predictive simulation of 

the thermal-hydrological conditions during the heating phase of the repository indicates that the 

average downward flow in the condensation zone may be elevated from ambient infiltration by a 

factor of ten [Haukwa, 1999]. In this case, assuming elevated downward flow of 100 mm/yr, the 

frequency of the above episodic flow events would be 10 times higher. 

 

 

 

4.1 Characteristic Vaporization Rate 



Penetration of Liquid Fingers into Superheated Fractured Rock 15 

 Before presenting detailed numerical results, it seems reasonable to define a characteristic 

parameter that helps to estimate the relative impact of vaporization on liquid-front movement at 

the time and length scale of interest. Let us define a characteristic time interval t* as the time 

needed for the liquid finger to flow from z = 0 to z = L with velocity vP. Thus, t* denotes the 

front arrival time at the drift crown in absence of vaporization. We may calculate the average 

temperature gradient at the rock surface for this time interval from Equation (5), with the 

simplifying assumptions that (1) temperature perturbation starts at t = 0 at all locations 

independent of actual front arrival time (i.e., t0(z) = 0), and (2) the initial rock temperature 

distribution is represented by an average value RIT . Integration from 0 to t* and dividing by t* 

gives the average gradient 
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which is then introduced into Equation (6). Spatial integration from z = 0 to z = L yields the 

approximate change in mass flow that would occur due to vaporization as the liquid front travels 

distance L into the superheated region. We may relate this change of mass flow to the initial 

mass flow mP and refer to the resulting parameter as the characteristic vaporization rate V*: 
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 If V* is small, the intensity of vaporization is small compared to the magnitude of flow in the 

liquid ribbon. Neither mass flow rate nor apparent penetration velocity of the tip of the liquid 

pulse is significantly affected for the time and length scale considered. The time scale considered 

falls into flow period (1) defined earlier, in which front penetration is primarily governed by the 

gravity-driven flow behavior. However, if V* is large, vaporization is intense and mass flow is 

expected to either decrease significantly along distance L or vanish completely before reaching 

L. Also, the apparent penetration velocity of the tip of the moving front is strongly delayed 

compared to the actual flow velocity. Here, the time scale relates to flow period (2), in which 

front propagation is primarily governed by mass losses caused by boiling. A critical value for V* 

that allows us to distinguish between the two flow regimes must be derived from experiments. It 

is expected that this critical value should be somewhere close to unity. 

 Table 1 gives the characteristic time and characteristic vaporization rate V* calculated for 

the flow events in Case 1 and Case 2 at L = 3 m. (For the linear initial temperature distribution, 

RIT  can be readily derived from β L/2.) From the calculated values of V*, Case 1 should be 
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strongly influenced by the effects of boiling at the length scale of interest (L = 3 m), while the 

flow event in Case 2 should be fairly unaffected. For comparison of different length scales, we 

have also calculated the characteristic vaporization rate for distances L = 1.5 m and L = 4.5 m. 

It is evident from these values that the impact of boiling significantly increases with the 

infiltration distance of the liquid pulse. 
 

4.2 Results for Cases 1 and 2 
 In this section, example results from the new semi-analytical scheme are presented. A main 

factor of interest is how fast the penetration distance, measured at the tip of the moving liquid 

front, increases with time. Figures 4 shows the penetration distance versus time for Case 1, 

exhibiting a front arrival curve typical for a flow event with strong impact of heating at the 

considered scale L = 3 m (characteristic vaporization rate V* = 1.61). Very soon after the liquid 

first enters the superheated region, front penetration is already delayed compared to the 

undisturbed flow velocity vP. The further the finger infiltrates, the stronger this effect. The front 

delay is caused by earlier submasses of water vanishing as a result of boiling and only later 

released submasses progressing to further penetration lengths. This effect is reflected in the 

position of the square symbols in Figure 4, showing the location where every 20th submass has 

vanished and stopped. At early times, when temperature gradients at the fracture-rock interface 

are steep, penetration of a later "bucket" is much larger compared to an earlier one. At later 

times, when rock temperature gradients have relaxed and temporal changes are small, the 

additional penetration of later "buckets" becomes smaller, and front penetration seems to slow 

down rapidly.  

 After about 2.24 m, the episodic infiltration event comes to a final stop as all water has 

vaporized. Hence, for flow events similar to Case 1, the superheated region around a waste 

emplacement drift supplies an effective safety mechanism that prevents water from entering the 

tunnels. Note that the maximum pulse penetration relates to the maximum penetration of the last 

submass of water released at the end of the 60 s pulse duration. The dashed line indicates the 

front arrival of infiltration events with duration longer than 60 s. In the present case, water 

reaches the drift crown if the pulse duration is increased by a factor of about four.          

 Results are different for the infiltration event in Case 2, presented in Figure 5. The effect of 

vaporization is much smaller than in Case 1, which is indicated by the small characteristic 

vaporization rate V* = 0.22. Note the different time scale in Figure 5, as flow velocity vP is 
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about eight times faster than in the previous case. The penetration length of the tip of the finger 

increases rapidly, and the apparent penetration velocity is similar to the actual flow velocity. The 

liquid finger reaches the drift crown after about 18 s, at which time water may start seeping into 

the tunnel. However, because of vaporization, the total amount of water available for seepage is 

only 50% of the total infiltrated mass. Although it is less obvious from the slope of the front 

arrival curve, the hot rock environment still provides an important safety feature that reduces the 

amount of water seeping into drifts by a significant percentage. We may ignore the presence of 

the drift at z = 3.0 m and follow the liquid finger down the fractured rock. In this case, the 

episodic infiltration event comes to a final stop after about 4.73 m. At this distance, the effect of 

heating is more obvious: the front arrival curve deviates noticeably from the constant-velocity 

curve. At even larger scales, we may eventually expect to see behavior similar to Case 1, in 

which vaporization has strong implications for the front penetration.   

 Let us study the flow behavior of episodic infiltration events at superheated conditions in 

more detail by analyzing mass flow profiles. Figure 6 gives flow rate as a function of vertical 

location for Case 1, at t = 60 s, 90 s, 120 s, and 150 s. The first time interval t = 60 s coincides 

with the end of the pulse injection at the boiling-point isotherm. (For comparison, we have also 

plotted the mass flow profile of a liquid pulse in absence of vaporization, at t = 150 s). Typically, 

mass flow is highest at the end of the pulse and flow rates decrease rapidly towards the tip of the 

moving front. The total amount of water decreases significantly with time: at t = 60 s, 78% of the 

injected mass is still available, while at t = 150 s, 98% of the injected mass has already vanished. 

A few seconds later, infiltration comes to an end. The decline of total mass manifests itself in 

two ways: First, the magnitude of flow decreases and, second, the vertical extension of the finger 

becomes smaller. Note that the change of vertical extent stems from submasses vanishing at the 

tip of the pulse. There is no mechanical or numerical dispersion related to this observation.   

 Figure 7 shows mass flow profiles for Case 2. Here, the curves are less affected from the 

superheated environment. In contrast to Case 1, in which the liquid front does not move much 

further after infiltration at the top has ended, Case 2 exhibits typical characteristics of a short, 

intense infiltration event flowing with large velocity. The liquid finger moves down the fracture 

with shape almost intact and vertical extent virtually unchanged. However, the magnitude of 

flow changes slowly, and at t = 18 s, shortly before reaching the drift crown, 44% of the total 

injected water has already vaporized.   
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 It is obvious from Figures 6 and 7 that the total mass flowing past a given location decreases 

as the liquid pulse moves down the fracture. The further the infiltrating liquid front has 

penetrated into the superheated region, the less water is available. Therefore, during the heating 

phases of the repository, the potential of seepage into drifts at Yucca Mountain will be strongly 

affected by the extent of the superheated region forming above the drifts. This is demonstrated in 

Figure 8, where total breakthrough of mass is plotted as a function of vertical infiltration 

distance. For the example considered in Case 1, 74% of the injected mass arrives at the tunnel if 

the boiling-point isotherm is only 1 m away from the crown. About 10% of the total injected 

mass is captured for a superheated region of 2 m extent, and no water seeps into the drift for 

infiltration distances above 2.24 m. A similar dependence is observed for Case 2, where total 

breakthrough of mass is 94% at 1 m, 77% at 2 m, and 50% at 3 m. 

 

4.3 Sensitivity Study 
 Sensitivity of the liquid-pulse flow in a superheated regime is studied with respect to a variety 

of input parameters. From the definition of V* in Equation (18), the relative effect of boiling is 

related to properties describing magnitude and geometry of the infiltration event (mass flow rate, 

ribbon width), the thermal properties of the rock (thermal conductivity and thermal diffusivity), 

the intrinsic thermal properties of water (specific enthalpy of vaporization), the initial rock-

temperature field (average temperature), the fracture aperture (defines flow velocity, which is 

required to derive t*) and the length scale of interest. In the following paragraphs, results are 

presented for parameter variation of mass flow rate and ribbon width, thermal conductivity, 

initial rock-temperature field, and fracture aperture. The initial rock-temperature field is varied 

in two different ways: first, uniform gradients of different magnitude are considered; second, 

different temperature distributions such as a uniform temperature field or a square function of 

temperature are assumed. Another important parameter, the duration of the infiltration event tP, 

is not specifically discussed in this section. The strong impact of pulse duration becomes 

immediately obvious in Figures 9 through 12, where front arrival curves are presented for 

continuous infiltration, with the maximum penetration of a 60 s pulse indicated by a solid circle. 

 We use infiltration event Case 1 as the base case and vary one parameter at a time, comparing 

results with the base case. We also studied parameter variation using Case 2; general findings are 

similar and will not be presented in this section. Table 2 summarizes the different test cases 

studied and provides the maximum penetration distance (and related time) that the liquid pulse 
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travels in each case. It also gives characteristic properties t* and V* for two locations of interest 

(1.5 m and 3.0 m) and lists the cumulative mass of water collected at these locations.  

 
Ribbon width, initial rock temperature gradient and mass flow rate 

 The width of the liquid finger, w, defines the cross-sectional area for heat conduction from the 

hot rock surface to the flowing liquid. A larger area allows for more heat flow at the fracture-

rock interface and results in higher vaporization rates. Cases studied are w = 0.04 m and w = 0.2 

m, compared to the base case value of w = 0.02 m. Note that all other parameters are unchanged 

from the base case. The front arrival curves in Figure 9 demonstrate the strong impact of 

increasing ribbon width. The infiltration of the tip of the liquid pulse deviates much earlier from 

the constant-flow-velocity curve, and the infiltration event ends at significantly shorter 

penetration distance. The characteristic values V* given in Table 2 correlate well with this 

observed behavior. Note that the solid circles, indicating the maximum penetration distance for 

each case, fall on one straight line, defined by the flow velocity of the very last submass of the 

infiltration event. As suggested by the definition of V* in Equation (18), sensitivity to the initial 

rock temperature gradient is identical to ribbon width; results for two cases are given in Table 2 

(β = 2.5oC/m and β = 10oC/m). Moreover, sensitivity to flow rate mP is inversely related to 

ribbon width. The values in Table 2 demonstrate that results obtained with a two (ten) times 

smaller flow rate are identical to results obtained with a two (ten) times larger ribbon width. 

Note that only flow rates smaller than the flow rate used in the base case (i.e., mP = 4.0 × 10-4 

kg/s) have been considered in the sensitivity analysis. Flow rates larger than mP = 4.0 × 10-4 kg/s 

are not possible without changing the finger geometry, since this value denotes the maximum 

gravity-driven flow rate in a fully saturated liquid finger of aperture (2b) = 0.917 × 10-4 m and 

ribbon width w = 0.02 m. Similarly, smaller ribbon widths than the one used in the base case are 

not possible without changing other parameters. Therefore, only larger ribbon widths have been 

considered in the sensitivity study. 

 
Thermal conductivity of the rock matrix 

 Results for a change in thermal conductivity are presented in Table 2 and Figure 10. Two 

cases are analyzed, a small thermal conductivity of 0.6 W/m-K and a large thermal conductivity 

of 2.4 W/m-K. The curves demonstrate that an increase in thermal conductivity gives rise to 

increased vaporization, which also correlates to the value of V* given in Table 2. Sensitivity to 

thermal conductivity is smaller than sensitivity to ribbon width, initial rock-temperature gradient, 
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or mass flow rate. Changes in thermal conductivity have two counteracting effects: on the one 

hand, energy transfer at the fracture-rock interface is linearly related to kM; on the other hand, the 

temperature gradient at the fracture-rock interface is inversely related to the square root of kM.   

  
Initial rock temperature distribution 

 The semi-analytical solution scheme allows for any given vertical distribution of the initial 

rock temperature field above the drift crown. In this paragraph, we study the effect of changing 

from the assumed uniform vertical gradient to (a) a uniform value and (b) a square function of 

distance. The latter is defined by 

 . (19) ( ) 2
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For the sensitivity analysis, we make sure that the average temperature of the three temperature 

fields is identical on the length scale of interest. Using L = 3 m, a boiling temperature of 96oC, 

and a base case gradient of 5oC/m, the average temperature is 103.5oC. Thus, the uniform 

temperature field is assigned a rock temperature of 103.5oC, and the coefficient α to choose for 

the square function is 2.5oC/m2. Since RIT  remains unchanged, the characteristic vaporization 

rate V* at L = 3 m is identical in all three cases.  

 Front arrival curves for the different temperature fields are presented in Figure 11. The 

uniform-temperature curve exhibits strong boiling-effects at early times after infiltration, as the 

temperature difference between the infiltrating water and the hot rock surface immediately jumps 

to 7.5oC. A much slower response is seen in the square-function curve, where the rock 

temperature increases slowly at initial times but rapidly at large infiltration lengths. However, in 

none of the cases is the length scale of interest actually reached by the liquid pulse of duration 

tP = 60 s. Thus, calculating V* at L = 3.0 m may be misleading because the average temperature 

along the actual flow path of the pulse is different from the average temperature used for V*. It 

seems more appropriate to analyze the characteristic vaporization rate at a shorter distance, e.g., 

at L = 1.5 m. Then, values of V* correspond well with the observed intensity of vaporization and 

also relate to the cumulative mass of water collected at 1.5 m (see Table 2). 

 For longer pulse duration, an interesting observation can be made at a penetration distance of 

L = 3 m. As mentioned above, the average temperature along this distance is identical in all 

temperature cases, while the vertical distribution is different. Despite these differences, the three 

front arrival curves meet in one point at L = 3 m and t ≈ 330 s, and the amount of water collected 

at the drift crown is identical for all cases. This suggests that the apparent penetration velocity 
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measured (as well as the cumulative mass collected) at a location L is independent of the vertical 

distribution of temperature between z = 0 and L, as long as the integrated temperature along this 

distance is identical. For time periods larger than t ≈ 330 s, the early-time front arrival pattern of 

the three curves is reversed.  Now the square-function case exhibits the strongest impact of 

vaporization, as a result of rapidly increasing rock temperatures. 
 
Fracture aperture 

 Variation of fracture aperture changes the flow velocity of the liquid pulse (see Equation (8)), 

and thus influences the time scales for heat conduction in the rock and subsequent vaporization 

of water. This has two counteracting effects: as the water moves faster along the adjacent rock 

surfaces, less time is available for conductive transfer of heat, decreasing the effect of boiling. 

On the other hand, the temperature gradients at the fracture-rock interface remain very steep, 

giving rise to increased vaporization.  

 Two cases with larger fracture aperture are studied in this section, (2b) = 1.25 × 10-4 m and 

(2b) = 2.5 × 10-4 m. These values relate to flow velocities of 4.21 cm/s and 16.86 cm/s, compared 

to 2.27 cm/s in the base case. Figure 12 shows that variation in fracture aperture significantly 

changes the early-time behavior, in which the apparent penetration velocity of the tip of the front 

is nearly equal to the flow velocity of the liquid. However, with increasing infiltration distance, 

front penetration slows down in all three cases, and the larger the aperture, the more rapid the 

decrease of apparent penetration velocity. From the slope of the curves, we expect that all three 

cases will eventually exhibit a similar long-term asymptotic behavior, independent of flow 

velocity (see Section 4.5).  

 Note that the maximum penetration of the 60 s pulse is identical for all three apertures, and so 

is the cumulative mass collected at L = 1.5 m (Table 2). This suggests the conclusions that both 

(1) the infiltration distance as a function of pulse duration and (2) the cumulative mass flow as a 

function of location are insensitive to the actual flow velocity vP of the water.  

 

4.4 Comparison with TOUGH2 Simulation Runs 
 To verify the semi-analytical solution scheme, we perform modeling of the pulse-injection 

problem using a standard finite-volume scheme. Hereby, the fracture of length L = 3.0 m is 

represented with one-dimensional vertical finite volumes of uniform aperture and thickness. One 

component (water) is considered available in two co-existing phases (liquid, vapor). At initial 

state, no liquid water exists in the model domain; conditions are vapor-static at temperature TRI 
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and atmospheric pressure P = 87,000 Pa. Starting with t = 0, water with an enthalpy of 

400 KJ/kg, corresponding to a temperature of approximately 96oC, is injected at the top of the 

superheated fracture domain.  

 Simulations are performed using the TOUGH2 code that allows for the coupled transport of 

water, vapor, air, and heat in porous and fractured media [Pruess et al., 1999]. For representation 

of the rock matrix, a special feature of TOUGH2 is applied that accounts for conductive heat 

exchange between fracture faces and adjacent semi-infinite half-spaces beyond the fracture 

walls. Following a methodology suggested by Vinsome and Westerveld [1980], TOUGH2 

approximates the temperature profile in the semi-infinite conductive rock layer by a simple, yet 

very accurate trial function. Note that the numerical simulator requires a uniform initial 

temperature field for the semi-infinite half-space. Therefore, the comparison between TOUGH2 

results and results obtained with the new solution scheme is conducted for a uniform initial 

temperature case with TRI = 103.5 oC. The properties chosen for fracture and rock matrix are 

identical to the properties of Cases 1 and 2. 

 Two aspects of the numerical simulation technique deserve mentioning. The first is related to 

the production of steam as water is being vaporized. To avoid pressurization of the model 

domain, each fracture volume is connected to a large-volume boundary element. The vapor 

generated is allowed to release into this boundary element so that pressure in the model domain 

remains at atmospheric conditions. The second aspect considers the functional relationship 

between capillary pressure, saturation, and relative permeability that needs to be prescribed in 

TOUGH2. To precisely reproduce the hydraulic conditions assumed in the new semi-analytical 

solution scheme, we chose to neglect capillary forces while defining a simple linear relative 

permeability function with kr = Sl. This guarantees a constant value of flow velocity vP for the 

infiltrating liquid pulse, independent of the decrease in mass flow rate (saturation) along the 

infiltration distance. 

 For both solution methods, two different vertical discretizations with increments of 1 mm and 

4 mm were analyzed. Note that in the semi-analytical solution, the size of vertical increments dz 

is related to time step size dt from dz = vP dt, while the number of submasses is nMass = tP/dt (see 

Section 3). From these relations, the number of submasses in Case 1 would be 1,361 and 340 for 

grid sizes of 1 mm and 4 mm, respectively; in Case 2, the respective number of submasses is 502 

and 125.  
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 Results for the different solution schemes and discretizations are presented in Figure 13 in the 

form of dimensionless mass flow profiles (m(z,t)/mP), for Case 1 at 90 s and for Case 2 at 18 s. 

Compared to the new semi-analytical scheme, the finite-volume simulations performed are very 

sensitive to the vertical discretization. While the two mass flow profiles calculated with the 

semi-analytical scheme are virtually identical, the TOUGH2 results arrive at significantly 

different front penetration patterns for the two grid sizes, with the 1 mm discretization giving the 

better agreement with the semi-analytical solution. Results also indicate that the less refined the 

TOUGH2 grid, the shorter the simulated maximum infiltration of the liquid finger, and the 

smaller the cumulative mass flow collected at a given location. Evidently, this effect is related to 

numerical dispersion phenomena that increase the available cross-sectional area for conductive 

heat transfer. This finding has two important implications: (1) standard Eulerian solution 

schemes using fixed grids (FEM, FDM, FVM) require highly refined discretizations for 

simulating flow events and heat exchange processes that significantly depend on dispersion 

characteristics; (2) natural (physical) dispersion processes, e.g., stemming from fracture aperture 

variation, may significantly increase the effect of vaporization on the propagating pulse flow.  

 Overall, the agreement between TOUGH2 results obtained with fine discretization and the 

new time-marching scheme is good. The main attributes of episodic pulse flow in a superheated 

regime are well captured in both Cases 1 and 2, which becomes particularly evident in 

comparison to the profiles of a front moving in absence of vaporization. However, noticeable 

differences remain between the two methods, caused by the nature of the Eulerian versus 

Lagrangian solution schemes. A finite-volume scheme will never be able to approximate the 

sharp-front propagation capability of a Lagrangian solution method precisely. In terms of 

predicting the potential seepage into tunnels at Yucca Mountain, the new solution technique 

gives conservative estimates, since no accounting is made for spreading of the pulse.       

 

4.5 Comparison with Analytical Solution for Long-term Asymptotic Flow 

Behavior 
 At large time scales, the front penetration of a liquid pulse can be estimated from an analytical 

solution given by Phillips [1996] (see Appendix A). Figure 14 shows this analytical solution 

compared with the simulation results of Section 4.2 for a time period of 50,000 s, using the 

properties given in Case 1 and applying continuous infiltration. (Note that the maximum time 

scale tm defined by Equation (7) is exceeded for this time period. We get around this by 
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increasing the ribbon width until Equation (7) is satisfied. Scaling mass flow rate by the same 

factor guarantees that the simulation results are identical to Case 1). Also plotted is the constant- 

velocity curve l(t) = vP t, with vP = 2.27 cm/s for Case 1. Clearly, the analytical solution agrees 

favorably with the new semi-analytical method at large times and defines an asymptotic 

approximation function to estimate the long-term behavior of pulse infiltration. Similarly, the 

constant-velocity curve forms an asymptotic solution for very early times. The intermediate time 

scale, however, which is relevant in most cases of short-term episodic pulse events, cannot be 

represented by any of the approximate solutions. The exact solution must be used, as calculated 

from the new semi-analytical solution scheme. 

 

5.  Summary and Conclusions 
 A new semi-analytical method is presented for calculating the transient gravity-driven flow of 

liquid fingers in superheated fractured rock. The method is based on a simplified conceptual 

model of the complex fluid-flow and heat-transfer behavior in a vertical fracture surrounded by 

hot rock. The solution scheme features a time-marching algorithm that tracks the propagation of 

finite submasses of water, while an analytical solution is applied to consider mass losses 

resulting from heat conduction and subsequent boiling from the adjacent hot rock. Several 

relevant phenomena of pulse flow can be readily explained from simple considerations related to 

the mass-tracking conceptual model. Note that the solution scheme can be adopted to 

comparable problems of liquid finger flow (e.g., when considering effects of matrix imbibition). 

 The new numerical algorithm is robust and very fast, thus allowing for time-consuming 

Monte-Carlo type analyses. Simulation results from the new solution compare favorably with 

results derived from an analytical asymptotic solution as well as with results obtained using a 

standard finite-volume simulator (i.e., simulator TOUGH2 for non-isothermal flow of multi-

component, multiphase fluids; Pruess et al. [1999]). The simulation time required for the 

TOUGH2 runs is several orders of magnitude higher, because of the extreme nonlinearities and 

the vast range of intrinsic time scales involved in the problem.  

 A number of test cases were studied using the semi-analytical method, with property ranges 

somewhat typical for the future conditions at the potential nuclear waste repository in Yucca 

Mountain, Nevada. A sensitivity study was performed to analyze the relative impact of different 

parameters. Several conclusions can be reached from this work: 
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1. Vigorous boiling of the infiltrating water has a strong effect on the front propagation of 

liquid-finger flow. Vaporization forces the apparent penetration velocity of the tip of the 

finger to be much slower than the flow velocity of the water. For episodic flow events, the 

maximum penetration of the liquid front is given by the distance that the last submass 

infiltrates into the superheated region before it has completely boiled away. Typically, the 

maximum penetration for the cases considered in our study is in the range of only a few 

vertical meters. 

2. The cumulative mass of water collected at given locations in the superheated region is 

often much smaller than the initial mass of the liquid finger, because a large fraction of 

the incoming water vaporizes before reaching the location. 

3. Results of the sensitivity study suggest that pulse flow in superheated rock is significantly 

affected by the magnitude and duration of the flow event, the geometric form of the finger 

(i.e., ribbon width), and the initial rock temperature field (both average temperature and 

temperature distribution). Less impact was observed from changes in thermal conductivity 

of the rock and changes in fracture aperture, as counteracting effects of parameter 

variation were observed in these cases. 

4. A characteristic parameter defined in this paper provides a fast initial estimate for the 

relative impact of boiling on liquid finger flow. The characteristic vaporization rate V* 

compares the approximate mass loss caused by boiling with the initial liquid mass of the 

flow event, calculated at the time and length scale of interest. For the cases studied, values 

of V* corresponded very well with the observed flow behavior.   

5. For initial rock temperature distributions that follow simple functions in z, the long-term 

behavior of pulse penetration can be approximated by asymptotic analytical expressions 

[Birkholzer, this issue]. At early times, pulse penetration is bounded by the constant-

velocity curve, neglecting the effect of boiling. However, for most cases of short-term 

episodic pulse flow, an intermediate time period is relevant that cannot be represented by 

the asymptotic solutions. 

  With respect to the conditions at Yucca Mountain the heat generated from the waste 

packages is apparently sufficient to reduce the probability of seepage into emplacement tunnels 

by a significant amount, for the time period that repository temperatures are above boiling. 

However, the simulations performed in this work are mainly for illustration and demonstration 

purposes, and a detailed Monte-Carlo-type analysis would be needed to properly represent the 
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possible ranges of heterogeneous formation properties at Yucca Mountain. Also note that the 

conceptual model proposed in this paper uses conservative assumptions that tend to overestimate 

the maximum penetration of a liquid pulse and the cumulative mass collected at a given location. 

Such conservative assumptions include, for example, neglecting the effect of matrix imbibition, 

assuming a constant flow velocity of the liquid, and neglecting the possibility that open tunnel 

cavities may form a capillary barrier for pulse flow. However, another assumption of the 

conceptual model may be nonconservative: we apply an instantaneous cooling boundary 

condition at the rock surface upon arrival of the cooler liquid (negligible energy resistance at the 

contact point). This may not be correct for very fast pulse flow, where a vapor halo may form 

between the liquid water and the hot rock wall, reducing the thermal conductivity at the 

interface. The validity of our assumptions and the potential impact of additional processes shall 

be studied in a proposed future laboratory experiment.  
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Nomenclature 
Cm  rock heat capacity (J/kg-K) 
dt  time step (s) 
dz  vertical space increment (m)  
g   gravitational acceleration (m/s2)  
h  specific enthalpy of vaporization (J/kg) 
km  rock thermal conductivity (W/m-K) 
kr  relative permeability 
L  distance from z = 0 to location of interest (m) 
l(t)  penetration distance of the tip of the liquid front at time t (m) 
MP  total initial mass of infiltration event (kg) 
Mj submass (kg) 
mP  initial mass flow rate of infiltration event (kg/s)  
m mass flow rate (kg/s) 
nMass  number of submasses 
nz   number of space increments  
P pressure (Pa) 
Sl    liquid saturation 
TP liquid (boiling) temperature (oC) 
TR rock temperature (oC) 
TRI initial rock temperature (oC) 
T’ temperature gradient at fracture-rock interface (oC/m) 
t  time (s) 
t* characteristic time (s) 
tP  duration of infiltration event (s) 
t0(z) time interval after initial infiltration until arrival of the liquid finger at location z (s) 
tm  maximum time interval for validity of 1-D heat conduction assumption (s) 
ta  time interval used for definition of validity range of asymptotic solutions (s)  
V*  characteristic vaporization rate 
VP total initial volume of infiltration event (mL) 
vP   flow velocity (m/s) 
w  finger width (m) 
x distance from fracture wall (m) 
z vertical distance (m) 
(2b)  fracture aperture (m)  
α parameter used for definition of initial rock temperature (oC/m2) 
β initial rock temperature gradient (oC/m) 
κ  rock thermal diffusivity, given as km/ρmCm (m2/s) 
µ   dynamic viscosity (kg/m-s) 
ρm  rock grain density (kg/m3)  
ρl  liquid density (kg/m3)  
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Appendix A 
 Phillips [1996] developed an analytical solution for the infiltration distance of a liquid finger 

flowing in superheated fractured rock as a function of time. The solution is based on a 

conceptual and geometrical model similar to the one introduced in Section 2 of this paper. The 

proposed validity range is identical to the range defined by Equation (7), giving an upper time 

constraint tm. A lower limit is not provided by Phillips [1996], implying that the analytical 

solution is applicable at all times t ≤ tm. However, in Figure 14 we have plotted the analytical 

solution in comparison with our new semi-analytical results and found that it severely 

overestimates infiltration distance at early times. In fact, Phillips’ solution involves such a rapid 

initial increase of infiltration distance that the corresponding flow velocity is much larger than 

vP, the gravity-driven flow velocity in the absence of vaporization (Equation (8)). The constant-

velocity curve l(t) = vP t in Figure 14 provides an upper bound for the infiltration distance, 

because the liquid pulse flow cannot be faster than vP. The rapid initial increase infiltration 

distance calculated by Phillips’s solution is clearly unphysical. Consequently, his solution cannot 

be used for early time periods; however, it does provide an asymptotic approximation of the 

long-term flow behavior. 

 Let us analyze Phillips’ analytical solution in more detail. Using the nomenclature given in 

this paper, the governing equation solved for in Phillips [1996] is 

 
( ))z(tt

z
h

wk2f
z

)t,z(m

0
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−πκ
β

−=
∂

∂
, (A1) 

which is similar to Equation (6). Note that the temperature term in Equation (6), (TRI – TP), has 

been replaced by the term (βz), as a uniform vertical gradient β of the initial rock temperature 

field is assumed. (Also note that Phillips introduced an additional factor f1 = 21/2 on the right-

hand side of Equation (A1)). We have not been able to follow Phillips’ rationale for using this 

factor. Thus, for better comparison with our results in Figure 14, we adjusted the analytical 
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solution by using a factor of f1 = 1. This shifts the resulting infiltration curve slightly, but does 

not change its general behavior.) For solution of Equation (A1), Phillips [1996] utilizes a simple 

energy balance for the vaporization of water entering the superheated region, assuming that the 

energy needed to completely boil off the mass of infiltrating water is proportional to the energy 

extracted from the rock at all times t ≤ tm. The resulting proportionality between infiltration 

distance and time, l(t) ≈ t1/4, is used to substitute the unknown time t0(z) in Equation (A1). Then, 

integration from z = 0 to z = l(t) can be readily performed, and the following relationship for the 

penetration of the tip of the front as a function of time is derived: 
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The reason for the early-time differences between Equation (A2) and the exact solution is 

obvious: The above-mentioned energy balance is not valid for small t. At early times, only a 

small fraction of the infiltrating water boils off, while the bulk of the liquid pulse moves with 

gravity-driven flow velocity. Thus, the proportionality l(t) ≈ t1/4 does not hold. At late times, 

however, the propagation of the tip of the front is dominated by retardation effects caused by 

boiling, independent of the characteristics of flow in the fracture. (This explains the interesting 

observation that Phillips’ solution is independent of fracture aperture (2b), which governs the 

gravity-driven flow behavior in the fracture). In this case, the energy balance holds, and 

Equation (A2) is valid.   

 To define an adjusted validity range for Phillips’ solution, we may calculate the time period ta 

at which Equation (A2) and the constant-velocity curve l(t) = vP t intersect (see Figure 14):  
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For t >> ta, Equation (A1) provides an accurate asymptotic solution for the infiltration problem. 

In conjunction with the limiting condition t ≤ tm given in Equation (7), the resulting validity 

range of Phillips’ solution is thus ta << t ≤ w2/κ.  
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Table Captions 
 
Table 1: Parameters chosen for infiltration events Case1 and Case 2 

Table 2: Characteristic parameters and results for parameter variation related to Case 1. 

Superscript “*” denotes the base case properties. Values for maximum penetration 

depth and related time as well as cumulative mass refer to a pulse duration of 60 s. 

 

Figure Captions 
 
Figure 1: a. Schematic illustration of conceptual model of infiltration in unsaturated fractured 

rock surrounding heat-generating nuclear waste packages in emplacement tunnels 

(drifts) 

  b. Conceptual model for liquid finger flow in a vertical fracture with heat conduction 

from the adjacent matrix rock 

Figure 2: Different concepts for change of flow velocity as a function of mass flow rate   

Figure 3: Schematic illustration of the time-marching algorithm proposed for the flow of finite 

submasses Mj introduced into superheated rock   

Figure 4: Penetration distance versus time for infiltration event Case 1 

  (dashed line: for continuous pulse) 

Figure 5: Penetration distance versus time for infiltration event Case 2 

  (dashed line: for continuous pulse) 

Figure 6: Profiles of mass flow for infiltration event Case 1, at t = 60 s, 90 s, 120 s, and 150 s 

Figure 7: Profiles of mass flow for infiltration event Case 2, at t = 3 s, 9 s, and 18 s  

Figure 8: Cumulative mass collected at location z, compared to total injected mass (in %) 

Figure 9: Penetration distance versus time for different ribbon widths. Solid circles indicate 

location and time where infiltration event tP = 60 s comes to a final stop. Note that 

results for w = 0.04 m are identical to results for mP = 2.0x10–5 kg/s or β = 10oC/m. 

Results for w = 0.2 m are identical to results for mP = 4.0x10–6 kg/s.  

Figure 10: Penetration distance versus time for different thermal conductivities. Solid circles 

indicate location and time where infiltration event tP = 60 s comes to a final stop.  
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Figure 11: Penetration distance versus time for different initial rock temperature distributions. 

Solid circles indicate location and time where infiltration event tP = 60 s comes to a 

final stop.  

Figure 12: Penetration distance versus time for different fracture apertures. Solid circles 

indicate location and time where infiltration event tP = 60 s comes to a final stop.  

Figure 13: Profiles of dimensionless mass flow for infiltration event Case 1 at t = 90 s and 

infiltration event Case 2 at 18 s. The initial rock temperature is uniform. Results 

compare new solution scheme with TOUGH2 simulation, using two different vertical 

discretization lengths of 1 mm and 4 mm. In Case 1, maximum pulse penetration for 

the new solution scheme is 1.68 m with dz = 1 mm and 1.64 m with dz = 4 mm, 

while TOUGH2 results give 1.42 m with dz = 1 mm and 1.36 m with dz = 4 mm. In 

Case 2, the cumulative amount of water collected at L = 3 m is 50% of total injected 

water for both discretizations using the new solution scheme, compared to 39% for 

TOUGH2 run with dz = 1 mm and 30% for TOUGH2 run with 4 mm.  

Figure 14: Penetration distance versus time, for continuous infiltration. Results compare new 

solution scheme with analytical solution for asymptotic long-term behavior.  
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Tables  
Table 1: Parameters chosen and results obtained for infiltration events Case1 and Case 2 

 
Parameter Case 1 Case 2 

Initial mass flow rate mP 4.0 × 10-5 kg/s 8.0 × 10-3 kg/s 

Duration of infiltration event tP 60 s 3 s 

Fracture aperture (2b) 0.917 × 10-4 m 2.490 × 10-4 m 

Finger width w 0.02 m 

Initial rock temperature gradient β 5oC/m 

Rock thermal conductivity km  1.2 W/m-K 

Rock thermal diffusivity κ (=km/ρmCm) 5.25 × 10-7 m2/s 

Rock heat capacity Cm 900 J/kg-K 

Rock grain density ρm 2540 kg/m3 

Specific enthalpy of vaporization h 2.27 × 106 J/kg 

Liquid (boiling) temperature TP 96oC 

Dynamic viscosity of water µ (at boiling) 2.912 × 10-4 kg/m-s 

Density of water ρl (at boiling) 961 kg/m3 

Gravitational acceleration g 9.81 m/s2 

Maximum time interval tm 762.0 s 

Gravity-driven flow velocity vP 2.27 cm/s 16.72 cm/s 

Characteristic parameters at L = 1.5 m:  
- characteristic time t* 
- characteristic vaporization rate V* 

 
66.1 s 
0.57 

 
9.0 s 
0.08 

Characteristic parameters at L = 3.0 m:  
- characteristic time t* 
- characteristic vaporization rate V* 

 
132.21 s 

1.61 

 
17.9 s 
0.22 

Characteristic parameters at L = 4.5 m:  
- characteristic time t* 
- characteristic vaporization rate V* 

 
198.3 s 

2.96 

 
26.9 s 
0.40 

Maximum penetration 2.24 m 4.73 m 

Total mass collected at z = 1.5 m 44.0% 87.2% 

Total mass collected at z = 3.0 m 0% 50.0% 

Total mass collected at z = 4.5 m 0% 3.2% 
 

 

 

 



Pe
ne

tra
tio

n 
of

 L
iq

ui
d 

Fi
ng

er
s i

nt
o 

Su
pe

rh
ea

te
d 

Fr
ac

tu
re

d 
R

oc
k 

36
 

Ta
bl

e 
2:

 
C

ha
ra

ct
er

is
tic

 p
ar

am
et

er
s 

an
d 

re
su

lts
 f

or
 p

ar
am

et
er

 v
ar

ia
tio

n 
re

la
te

d 
to

 C
as

e 
1.

 S
up

er
sc

rip
t “

*”
 d

en
ot

es
 th

e 
ba

se
 c

as
e 

pr
op

er
tie

s. 
V

al
ue

s 
fo

r 
m

ax
im

um
 p

en
et

ra
tio

n 
de

pt
h 

an
d 

re
la

te
d 

tim
e 

as
 w

el
l a

s c
um

ul
at

iv
e 

m
as

s r
ef

er
 to

 a
 p

ul
se

 d
ur

at
io

n 
of

 6
0 

s. 

 
Se

ns
iti

vi
ty

 P
ar

am
et

er
s 

 
Pu

ls
e 

E
nd

s 
at

 L
oc

at
io

n 
[m

] 

Pu
ls

e 
E

nd
s 

at
 T

im
e 

 
[s

] 

 
 

t*
 a

t 1
.5

 m
 

[s
] 

 
V

* 
at

 1
.5

 m
 

[  
 ] 

 

T
ot

al
 M

as
s 

at
 z

 =
 1

.5
 m

  
[%

] 

 
 

t*
 a

t 3
 m

 
[s

] 

 
V

* 
at

 3
 m

 
[  

 ] 
 

T
ot

al
 M

as
s 

at
 z

 =
 3

 m
  

[%
] 

 
M

ax
im

um
 

T
im

e 
t m

 
[s

] 

R
ib

bo
n 

W
id

th
 [m

]: 
w

 =
 0

.0
2*

 
w

 =
 0

.0
4 

 
w

 =
 0

.2
0 

 
 

2.
24

 
1.

59
 

0.
71

 

 
15

8.
5 

12
9.

8 
91

.4
 

 
 

66
.1

 
66

.1
 

66
.1

 

 
0.

57
 

1.
14

 
5.

70
 

 
44

.0
 

3.
5 

0.
0 

 
 

13
2.

2 
13

2.
2 

13
2.

2 

 
1.

61
 

3.
22

 
16

.1
1 

 
0.

0 
0.

0 
0.

0 

 
 

76
2.

0 
30

48
.0

 
76

20
0.

0 

Fl
ow

 R
at

e 
[k

g/
s]

: 

m
P =

 4
.0

 ×
 1

0-5
* 

m
P =

 2
.0

 ×
 1

0-5
 

m
P =

 4
.0

 ×
 1

0-6
 

 
 

2.
24

 
1.

59
 

0.
71

 

 
15

8.
5 

12
9.

8 
91

.4
 

 
 

66
.1

 
66

.1
 

66
.1

 

 
1.

61
 

1.
14

 
5.

70
 

 
44

.0
 

3.
5 

0.
0 

 
 

13
2.

2 
13

2.
2 

13
2.

2 

 
1.

61
 

3.
22

 
16

.1
1 

 
0.

0 
0.

0 
0.

0 

 
 

76
2.

0 
76

2.
0 

76
2.

0 

R
oc

k 
Th

er
m

al
 C

on
-

du
ct

iv
ity

 [W
/m

-K
]: 

k m
 =

 0
.6

 
k m

 =
 1

.2
* 

k m
 =

 2
.4

 

 
  

2.
66

 
2.

24
 

1.
88

 

 
 

17
7.

1 
15

8.
5 

14
2.

9 

 
  

66
.1

 
66

.1
 

66
.1

 

  
0.

40
 

0.
57

 
0.

81
 

  
59

.6
 

44
.0

 
24

.1
 

 
  

13
2.

2 
13

2.
2 

13
2.

2 

  
1.

14
 

1.
61

 
2.

28
 

  
0.

0 
0.

0 
0.

0 

 
  

15
24

.0
 

76
2.

0 
50

8.
0 

In
iti

al
 T

em
pe

ra
tu

re
 

G
ra

di
en

t [
o C

/m
]: 

β 
= 

2.
5 

β 
= 

5*
 

β 
= 

10
 

 
  

3.
16

 
2.

24
 

1.
59

 

 
 

19
9.

2 
15

8.
5 

12
9.

8 

 
  

66
.1

 
66

.1
 

66
.1

 

  
0.

28
 

0.
57

 
1.

14
 

  
71

.2
 

44
.0

 
3.

5 

 
  

13
2.

2 
13

2.
2 

13
2.

2 

  
0.

81
 

1.
61

 
3.

22
 

  
2.

6 
0.

0 
0.

0 

 
  

76
2.

0 
76

2.
0 

76
2.

0 

In
iti

al
 T

em
pe

ra
tu

re
 

Fi
el

d:
 

Li
ne

ar
 F

un
ct

io
n*

 
U

ni
fo

rm
 V

al
ue

 
Sq

ua
re

 F
un

ct
io

n 

 
  

2.
24

 
1.

67
 

2.
47

 

 
 

15
8.

5 
13

3.
4 

16
8.

8 

 
  

66
.1

 
66

.1
 

66
.1

 

  
0.

57
 

1.
14

 
0.

28
 

  
44

.0
7 

3.
4 

71
.1

 

 
  

13
2.

2 
13

2.
2 

13
2.

2 

  
1.

61
 

1.
61

 
1.

61
 

  
0.

0 
0.

0 
0.

0 

 
  

76
2.

0 
76

2.
0 

76
2.

0 

Fr
ac

tu
re

 A
pe

rtu
re

 [m
]: 

2b
 =

 0
.9

2 
× 

10
-4

* 
2b

 =
 1

.2
5  

× 
10

-4
 

2b
 =

 2
.5

0  
× 

10
-4

 

 
 

2.
24

 
2.

24
 

2.
24

 

 
15

7.
7 

11
3.

2 
73

.3
 

 
 

66
.1

 
35

.6
 

8.
9 

 
0.

57
 

0.
78

 
1.

55
 

 
44

.0
 

44
.0

 
44

.0
 

 
 

13
2.

2 
71

.2
 

17
.8

 

 
1.

61
 

2.
20

 
4.

39
 

 
0.

0 
0.

0 
0.

0 

 
 

76
2.

0 
76

2.
0 

76
2.

0 



Penetration of Liquid Fingers into Superheated Fractured Rock 37 

Figures 

a.

b.

Sub-Boiling Region x

Heat Exchange
and Vaporization

M
ax
im
um

Pe
ne
tra
tio
n

at
Ti
m
e
t:
l(t
)

R
ib
bo
n
W
id
th
w

D
is
ta
nc
e
L

vP = b
2ρg /12 /µ (m/s)

Fr
ac
tu
re
A
pe
ru
re
2b

Drift

Superheated
Region

z

Liquid Pulse:
mP (kg/s), tP (s), TP (

oC)

Ti
m
e
of
Fi
rs
tA
rri
va
l

at
Lo
ca
tio
n
z:

t 0(
z)

 dz

Heat

m(z)

m(z+dz)

Rock

d
z

 L
iq

u
id

 
Figure 1:  a. Schematic illustration of conceptual model of infiltration in unsaturated fractured rock 

surrounding heat-generating nuclear waste packages in emplacement tunnels (drifts) 
  b. Conceptual model for liquid finger flow in a vertical fracture with heat conduction from 

the adjacent matrix rock 
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Figure 2: Different concepts for change of flow velocity as a function of mass flow rate 
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Figure 3:  Schematic illustration of the time-marching algorithm proposed for the flow of finite 

submasses Mj introduced into superheated rock   

 



Penetration of Liquid Fingers into Superheated Fractured Rock 40 

Time (s)

M
ax
im
um

Pe
ne
tra
tio
n
(m
)

0.00 100.00 200.00 300.00

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

Drift Crown

Tail of Pulse flows with vP

Episodic
Pulse Stops

Pulse
Duration

Front Movement
without Heat

 
 
Figure 4:  Penetration distance versus time for infiltration event Case 1 

  (dashed line: for continuous pulse) 
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Figure 5:  Penetration distance versus time for infiltration event Case 2 

  (dashed line: for continuous pulse) 
 



Penetration of Liquid Fingers into Superheated Fractured Rock 42 

z (m)

M
as
s
Fl
ow

(k
g/
s)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.500.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

4.0E-05

4.5E-05
t = 60 s

t = 90 s

t = 120 s

Profile of
Undisturbed Pulse

t = 150 s

 
 
Figure 6:  Profiles of mass flow for infiltration event Case 1, at t = 60 s, 90 s, 120 s, and 150 s 
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Figure 7:  Profiles of mass flow for infiltration event Case 2, at t = 3 s, 9 s, and 18 s  
 
 



Penetration of Liquid Fingers into Superheated Fractured Rock 44 

z (m)

C
um
ul
at
iv
e
M
as
s
(%
)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.500.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Case 2

Case 1

 
 
Figure 8:  Cumulative mass collected at location z, compared to total injected mass (in %) 
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Figure 9:  Penetration distance versus time for different ribbon widths. Solid circles indicate location 

and time where infiltration event tP = 60 s comes to a final stop. Note that results for 

w = 0.04 m are identical to results for mP = 2.0 × 10–5 kg/s or β = 10oC/m. Results for 

w = 0.2 m are identical to results for mP = 4.0 × 10–6 kg/s.  
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Figure 10: Penetration distance versus time for different thermal conductivities. Solid circles indicate 

location and time where infiltration event tP = 60 s comes to a final stop.  
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Figure 11: Penetration distance versus time for different initial rock temperature distributions. Solid 

circles indicate location and time where infiltration event tP = 60 s comes to a final stop.  
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Figure 12: Penetration distance versus time for different fracture apertures. Solid circles indicate 

location and time where infiltration event tP = 60 s comes to a final stop.  
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Figure 13: Profiles of dimensionless mass flow for infiltration event Case 1 at t = 90 s and infiltration 

event Case 2 at 18 s. The initial rock temperature is uniform. Results compare new solution 

scheme with TOUGH2 simulation, using two different vertical discretization lengths of 

1 mm and 4 mm. In Case 1, maximum pulse penetration for the new solution scheme is 

1.68 m with dz = 1 mm and 1.64 m with dz = 4 mm, while TOUGH2 results give 1.42 m 

with dz = 1 mm and 1.36 m with dz = 4 mm. In Case 2, the cumulative amount of water 

collected at L = 3 m is 50% of total injected water for both discretizations using the new 

solution scheme, compared to 39% for TOUGH2 run with dz = 1 mm and 30% for TOUGH2 

run with 4 mm.  
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Figure 14: Penetration distance versus time, for continuous infiltration. Results compare new solution 

scheme with analytical solution for asymptotic long-term behavior.  
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